|
1、變頻技術是應交流電機無級調速的需要而誕生的。20世紀60年代以後,電力電子器件經曆了SCR(晶閘管)、GTO(門極可關斷晶閘管)、BJT(雙極型功率晶體管)、MOSFET(金屬氧化物場效應管)、SIT(靜電感應晶體管)、SITH(靜電感應晶閘管)、MGT(MOS控製晶體管)、MCT(MOS控製晶閘管)、IGBT(絕緣柵雙極型晶體管)、HVIGBT(耐高壓絕緣柵雙極型晶閘管)的發展過程,器件的更新促進了電力電子變換技術的不斷發展。20世紀70年代開始,脈寬調製變壓變頻(PWM-VVVF)調速研究引起了人們的高度重視。20世紀80年代,作為變頻技術核心的PWM模式優化問題吸引著人們的濃厚興趣,並得出諸多優化模式,其中以鞍形波PWM模式效果最佳。20世紀80年代後半期開始,美、日、德、英等發達國家的VVVF變頻器已投入市場並獲得了廣泛應用。
2 變頻器控製方式
低壓通用變頻輸出電壓為380~650V,輸出功率為0.75~400kW,工作頻率為0~400Hz,它的主電路都采用交直交電路。其控製方式經曆了以下四代。
2.1 U/f=C的正弦脈寬調製(SPWM)控製方式
其特點是控製電路結構簡單、成本較低,機械特性硬度也較好,能夠滿足一般傳動的平滑調速要求,已在產業的各個領域得到廣泛應用。但是,這種控製方式在低頻時,由於輸出電壓較低,轉矩受定子電阻壓降的影響比較顯著,使輸出最大轉矩減小。另外,其機械特性終究沒有直流電動機硬,動態轉矩能力和靜態調速性能都還不盡如人意,且係統性能不高、控製曲線會隨負載的變化而變化,轉矩響應慢、電機轉矩利用率不高,低速時因定子電阻和逆變器死區效應的存在而性能下降,穩定性變差等。因此人們又研究出矢量控製變頻調速。
2.2 電壓空間矢量(SVPWM)控製方式
它是以三相波形整體生成效果為前提,以逼近電機氣隙的理想圓形旋轉磁場軌跡為目的,一次生成三相調製波形,以內切多邊形逼近圓的方式進行控製的。經實踐使用後又有所改進,即引入頻率補償,能消除速度控製的誤差;通過反饋估算磁鏈幅值,消除低速時定子電阻的影響;將輸出電壓、電流閉環,以提高動態的精度和穩定度。但控製電路環節較多,且沒有引入轉矩的調節,所以係統性能沒有得到根本改善。
2.3 矢量控製(VC)方式
矢量控製變頻調速的做法是將異步電動機在三相坐標係下的定子電流Ia、Ib、Ic、通過三相-二相變換,等效成兩相靜止坐標係下的交流電流Ia1Ib1,再通過按轉子磁場定向旋轉變換,等效成同步旋轉坐標係下的直流電流Im1、It1(Im1相當於直流電動機的勵磁電流;It1相當於與轉矩成正比的電樞電流),然後模仿直流電動機的控製方法,求得直流電動機的控製量,經過相應的坐標反變換,實現對異步電動機的控製。其實質是將交流電動機等效為直流電動機,分別對速度,磁場兩個分量進行獨立控製。通過控製轉子磁鏈,然後分解定子電流而獲得轉矩和磁場兩個分量,經坐標變換,實現正交或解耦控製。矢量控製方法的提出具有劃時代的意義。然而在實際應用中,由於轉子磁鏈難以準確觀測,係統特性受電動機參數的影響較大,且在等效直流電動機控製過程中所用矢量旋轉變換較複雜,使得實際的控製效果難以達到理想分析的結果。 2.4 直接轉矩控製(DTC)方式
1985年,德國魯爾大學的DePenbrock教授首次提出了直接轉矩控製變頻技術。該技術在很大程度上解決了上述矢量控製的不足,並以新穎的控製思想、簡潔明了的係統結構、優良的動靜態性能得到了迅速發展。目前,該技術已成功地應用在電力機車牽引的大功率交流傳動上。
直接轉矩控製直接在定子坐標係下分析交流電動機的數學模型,控製電動機的磁鏈和轉矩。它不需要將交流電動機等效為直流電動機,因而省去了矢量旋轉變換中的許多複雜計算;它不需要模仿直流電動機的控製,也不需要為解耦而簡化交流電動機的數學模型。
2.5 矩陣式交—交控製方式
VVVF變頻、矢量控製變頻、直接轉矩控製變頻都是交-直-交變頻中的一種。其共同缺點是輸入功率因數低,諧波電流大,直流電路需要大的儲能電容,再生能量又不能反饋回電網,即不能進行四象限運行。為此,矩陣式交-交變頻應運而生。由於矩陣式交-交變頻省去了中間直流環節,從而省去了體積大、價格貴的電解電容。它能實現功率因數為l,輸入電流為正弦且能四象限運行,係統的功率密度大。該技術目前雖尚未成熟,但仍吸引著眾多的學者深入研究。其實質不是間接的控製電流、磁鏈等量,而是把轉矩直接作為被控製量來實現的。具體方法是:
——控製定子磁鏈引入定子磁鏈觀測器,實現無速度傳感器方式;
——自動識別(ID)依靠精確的電機數學模型,對電機參數自動識別;
——算出實際值對應定子阻抗、互感、磁飽和因素、慣量等算出實際的轉矩、定子磁鏈、轉子速度進行實時控製;
——實現BandBand控製按磁鏈和轉矩的Band-Band控製產生PWM信號,對逆變器開關狀態進行控製。
矩陣式交交變頻具有快速的轉矩響應(<2ms),很高的速度精度(±2%,無PG反饋),高轉矩精度(<+3%);同時還具有較高的起動轉矩及高轉矩精度,尤其在低速時(包括0速度時),可輸出150%~200%轉矩。
3 變頻器控製方式的合理選用
控製方式是決定變頻器使用性能的關鍵所在。目前市場上低壓通用變頻器品牌很多,包括歐、美、日及國產的共約50多種。選用變頻器時不要認為檔次越高越好,而要按負載的特性,以滿足使用要求為準,以便做到量才使用、經濟實惠。表1中所列參數供選用時參考。
4 轉矩控製型變頻器的選型及相關問題
基於調速方便、節能、運行可靠的優點,變頻調速器已逐漸替代傳統的變極調速、電磁調速和調壓調速方式。在推出PWM磁通矢量控製的變頻器數年後,1998年末又出現采用DTC控製技術的變頻器。ABB公司的ACS600係列是第一代采用DTC技術的變頻器,它能夠用開環方式對轉速和轉矩進行準確控製,而且動態和靜態指標已優於PWM閉環控製指標。
直接轉矩控製以測量電機電流和直流電壓作為自適應電機模型的輸入。該模型每隔25μs產生一組精確的轉矩和磁通實際值,轉矩比較器和磁通比較器將轉矩和磁通的實際值與轉矩和磁通的給定值進行比較,以確定最佳開關位置。由此可以看出它是通過對轉矩和磁通的測量,即刻調整逆變電路的開關狀態,進而調整電機的轉矩和磁通,以達到精確控製的目的
4.1 選型原則
首先要根據機械對轉速(最高、最低)和轉矩(起動、連續及過載)的要求,確定機械要求的最大輸入功率(即電機的額定功率最小值)。有經驗公式
P=nT/9950(kW)
式中——機械要求的輸入功率(kW);
n——機械轉速(r/min);
T——機械的最大轉矩(N•m)。
然後,選擇電機的極數和額定功率。電機的極數決定了同步轉速,要求電機的同步轉速盡可能地覆蓋整個調速範圍,使連續負載容量高一些。為了充分利用設備潛能,避免浪費,可允許電機短時超出同步轉速,但必須小於電機允許的最大轉速。轉矩取設備在起動、連續運行、過載或最高轉速等狀態下的最大轉矩。最後,根據變頻器輸出功率和額定電流稍大於電機的功率和額定電流的原則來確定變頻器的參數與型號。
需要注意的是,變頻器的額定容量及參數是針對一定的海拔高度和環境溫度而標出的,一般指海拔1000m以下,溫度在40℃或25℃以下。若使用環境超出該規定,則在確定變頻器參數、型號時要考慮到環境造成的降容因素。
4.2 變頻器的外部配置及應注意的問題
1)選擇合適的外部熔斷器,以避免因內部短路對整流器件的損壞變頻器的型號確定後,若變頻器內部整流電路前沒有保護矽器件的快速熔斷器,變頻器與電源之間應配置符合要求的熔斷器和隔離開關,不能用空氣斷路器代替熔斷器和隔離開關。
2)選擇變頻器的引入和引出電纜根據變頻器的功率選擇導線截麵合適的三芯或四芯屏蔽動力電纜。尤其是從變頻器到電機之間的動力電纜一定要選用屏蔽結構的電纜,且要盡可能短,這樣可降低電磁輻射和容性漏電流。當電纜長度超過變頻器所允許的輸出電纜長度時,電纜的雜散電容將影響變頻器的正常工作,為此要配置輸出電抗器。對於控製電纜,尤其是I/0信號電纜也要用屏蔽結構的。對於變頻器的外圍元件與變頻器之間的連接電纜其長度不得超過10m。
|
|